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ABSTRACT 

Set-theoretically oriented mechanical theorem provers can exploit 

the fact that all notions in set theory can be derined in terms of 

the two primitives equality and set membership. However, since set 

theory permits very general constructions, such provers find it hard 

to decide, even in apparentlytrivialcases, how existentially quantified 

set variables should be instantiated. Extending results of Behmann 

(1922) we give algorithms for instantiating set- and map-valued variables 

in simple set-theoretic formulae, and also for calculating the truth- 

values of these formulae. 
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I. Introduction. 

The correctness of any program ultimately rests upon various mathe- 

matical facts implicit in it; and, depending upon the sophistication of 

the program,these mathematical facts may be arbitrarily deep. Thus a 

powerful, general proof checker will be a necessary part of any mature 

program verification system. 

programmed system into which one can enter sequences of logical/mathematical 

formulae, which it will accept as long as it can perform some computation 

Such a proof checker is an interactive 
. -  _ -  

- -- __ - - - . . - 

which guarantees that each new formula is a logical consequence of pre- 

ceding formulae. Such a verifier ensures rigorously against logical error, 

possibly at the price of requiring its user to key in a burdensome mass 

of intermediate detail. The weight of detail required will be inversely 

proportional to the size of the inferences which the system is able to 

make automatically. For this reason, the developing technology of program 

verification requires considerably improved automatic theorem provers. 

Automatic proof of mathematical theorems has been studied very actively 

since 1967. But progress has been slow; inevitably so in view of the very 

fundamental nature of the problems which need to be faced, most of which 

are unsolvable if stated in perfect generality and hyperexponentially 

difficult even in restricted cases. Nevertheless there do exist a number 

of proof techniques which,although general enough to cover important classes 

of statements, are nevertheless specialized enough to attain greater effi- 

ciency than the perfectly general resolution provers that have been most 

studied. An important technique of this kind is the systematic use of 

definitions, in reverse, to eliminate defined predicates and operators. 

This technique rests upon an important general metamathematical e- 
ciple of definition, which we can state as follows: 



A. L e t  S be  any c o l l e c t i o n  of p red ica t e  formulae, and l e t  

e ( x l , . . . y x  ) 

L e t  F be any completely new p red ica t e  symbol, i .e .  symbol no t  appearing 

i n  any formula of S , and l e t  f be any completely new funct ion  symbol. 

Then without a f f e c t i n g  t h e  consistency of 

e i t h e r  t he  formula 

be any p red ica t e  formula whose f r e e  v a r i a b l e s  are x ,..., x . n 1 n 

S w e  can extend i t  by adding 

(Yx ... xn) ( F ( x  l,... 'xn) -> e ( x  ,. . . y x n ) )  
1 1 

o r  t h e  formula 

(tix ... xn) ( ( 3 x  ) e ( x  ,... x , ) - - ~ e ( f ( x  , ..., x ) , x  ,... x 1) 
2 1 1 2 n 2 n 

t o  S . Formula (1) ( resp.  ( 2 ) )  i s  then c a l l e d  t h e  d e f i n i t i o n  of t h e  

new predica te  symbol F ( resp.  func t ion  symbol f . )  

B. Any formula of f i rs t  order  l o g i c  which fol lows from S toge ther  

wi th  (1) (or  ( 2 ) )  and which does not  conta in  any occurence of t h e  def ined 

symbol F (or  f )  fol lows from t h e  formulae of S alone.  

This t e l l s  us  t h a t  a formula P which can be proved from S and 

from a d e f i n i t i o n  (1) (or  (2 ) )  can always be proved as fol lows:  F i r s t  

use (1) (or ( 2 ) )  t o  e l imina te  every occurence of F (or f )  from P (by 

making appropriate  s u b s t i t u t i o n s ,  e.g. e ( x l ,  ..., x ) f o r  F(x ,..., xn)) . 
Then t h e  proof can be  completed using formulae of 

d e f i n i t i o n  (1) o r  (2) need ever be  used again.  

n 1 

S only,  bu t  no 

This  technique a p p l i e s  wi th  p a r t i c u l a r  advantage t o  proofs  i n  set 

theory,  s ince  set theory involves only a very few p r imi t ive  axioms, and 

only the  two p r imi t ive  p red ica t e s  equa l i ty  and set membership. 

o the r  pred ica tes  and opera tors  of set theory are def inable ,  and def in-  

a b l e  rapidly,  i n  terms of t hese  two pr imi t ives .  

A l l  

This f a c t  has  been 
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exploited by [Carvalho, 19741, and by [Bledsoe,1977a]and his group at 

the University of Texas, who have built set-theoretic theorem provers 

that incorporate definition-reversing rewrite rules and that have been 

able to prove theorems in elementary set theory and topology going 

considerably beyond what could be done by any pure resolution technique. 

(See also [Bledsoe & Bruell, 19741.) 

A main shortcoming of these otherwise surprisingly powerful provers 

is their inability to deal adequately with the problem of set theoretic 

instantiation. That this should be so follows directly from the gener- 

ality of the existential axioms of set theory, which imply the existence 

of every set definable by a well-structured set former 

Although ideal from the human mathematician's point of view, the complete 

generality of the allowed forms (3) deprives a set-theoretic theorem 

proving program attempting to instantiate a particular variable of all 

guidance. 

theorems requiring even trivial instantiations. For example, even the 

easy assertion 

It is consequently hard for a proof program to cope with 

(3C) (fx)(x~AvxGB=+ X E C )  . (4) 

which follows easily if we supply the apparently obvious instantiation 

C = powerset (A) u powerset (B) ( 5 )  

manually, is not easy for a fully automatic prover to handle. 

set-theoretic instantiation techniques thus appear as an important issue 

in mechanical theorem proving. 

.Improved 

This problem, the main subject of the 
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present paper, has also been investigated by [Behmann, 19221, and recently 

by [Bledsoe, 1977bl and his students (see [Minor ,19781). 

11. Preliminary Reductions; A Few Easy Cases. 

The problem of instantiation can be described as that of deciding the 
6 

conditions under which a formula 

is valid, and of producing a 'solution' x = x  for ( 6 )  if these condi- 

tions hold. If such a solution can be written in terms of the other 

basic parameters appearing in ( 6 ) ,  then ( 6 )  can be rewritten in a form 

not involving the quantifier 

0 

(3x) , which may make it possible to handle 

more complex cases , e. g. , 

Formulae (Vx)P(x) can be handled by rewriting them as %(3x)'LP(x) . 
If desirable, the predicate P appearing in ( 6 )  can be normalized as a 

disjunction of conjunctions, and since (3x) (P (x)vP (x)) is equivalent 

to (3x)Pl(x)v(3x)P (x) , we can a1way.s assume that the P(x) in ( 6 )  

is a conjunction of elementary terms. 

1 2 

2 

Having said this we now turn our attention to the class of formulae 

studied by Behmann, namely those formulae (6) in which the predicate P 

is a conjunction of Boolean set-theoretic expressions formed from set- 

valued variables by use of the set operators a n b  , a y b  , a-b , and 
the set inclusion operator a 3 b. If we allow ourselves to write set 

union as a sum, set intersection as an ordinary product, and the comple- 

ment of the set x as x ,  then any such formula ( 6 )  can be written as 
- 
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m 

k-1 k=1 

Since ( a = $ & b = @ )  f--3 ( a + b = @ )  , w e  can always assume n -  1 i n  

(8).  The de ta i l ed  treatment of (8) rap id ly  grows more complicated as 

m 

below. However, s i n c e  t h i s  treatment is hyperexponentially i n e f f i c i e n t ,  

w e  f i r s t  examine the  two s i m p l e s t  cases  m = O  and m - 1  , i n  which easy 

and e f f i c i e n t  techniques are ava i lab le .  

I n  t h e  case m = O  w e  must consider 

increases ;  i ts  general  treatment, due t o  Behmann, w i l l  be reviewed 

t 

which is  t o  say 

and (9) i s  equivalent  t o  a b = $ .  It follows t h a t  t h e  mul t iva r i ab le  

cases corresponding t o  (9) can be solved e a s i l y ,  e.g. t o  so lve  

(3x) (b E x C a' ) . Here a (minimal) so lu t ion  is x = b , 

(3x,y) (axy + b$ + CG + d G  = $) 

w e  rewrite i t  as 

This  i s  equivalent  t o  a b c d = $  and has  t h e  s o l u t i o n  x = c d  , from which 

w e  ob ta in  the  s o l u t i o n  y = bcd + diz  = d - (c - b) f o r  y . 
Next l e t  m = l  and consider  

( 3 x ) ( a x + b z = $ & c x + d X  # $ )  . 
e-> ( 3 x ) ( b C x S a  & c x + d G # @ ) .  

By adding a poin t  z E c - a  t o  a so lu t ion  x of (12) w e  never s p o i l  

t h e  so lu t ion ,  and hence (12) has t h e  so lu t ion  b + (c  - a) i f  i t  has 
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any solution. 

These conditions, like (121, involve one set equality and one 

inequality, so that inductive treatment of the n variable case 

corresponding to (12) is possible. For example, 

A solution will exist if and only if ab=@&(c-a)+(d-b)#@. 
- - -- _. _ _  . _ -  _ _  

-- . - -  _. - - - - _ _  - .  

- _ _  - - -  - - __ - . - __ - __ - 

. -  _. _ _  _ _  _ -  - _ -  
is equivalent to 

and hence has the solution 

x =  cd+ ((e-a) + (f - b) -ab) (15) 

if (13) is solvable at all, from which a value for y can be calculated. 

As another interesting elementary case we consider quantified formulae 

built around a single set-theoretic equation 

involving no set inequalities. 

e(xl, ..., x ) = @  but n 
However, we explicitly allow arbitrary 

sequences of existential and universal quantifiers, and do not always 

insist that e(x ,..., x ) only involve Boolean operators. Perhaps the 

simplest case is 
1 n 

We will always suppose that existentially quantified variables only 

appear as arguments of Boolean operators. 

write (16) as 

This assumption allows us to 
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Hence (16) is equivalent to 

Ub if the truth-value of (16) is 'true'. Similar cases involving 
Y 
more complex sequences of existential and universal quantifiers can be 

(Vy,z)(aybZ=@) , and has the solution 

Y 

treated in much the same way. 

111. The General Presburger-Behmann Case. 

[Presburger, 19291 gives an algorithm for calculating the truth value 

of any formula quantified over the integers and involving only addition, 

subtraction, and inequalities (cf. also [Cooper, 19721, [Shostak, 19771, 

[Bledsoe, 19751). [Behmann, 19221 sketches an algorithm for calculating 

the truth value of any formula quantified over sets and involving only 

Boolean operators, set inclusion and inequality, the set cardinality 

operator #s,  integer constants, and inequalities. We will now 

review and combine their techniques, thereby obtaining a decision 

procedure for formulae quantified over both sets and integers and involving 

__ - - - -- --- __ 

-I - - - - __ -~ - - - _ _  

- - .  _.  _ - _ _ _  - 

all of the operators just mentioned. Such formulae will be called PB- 

formulae. As we shall see, the decision procedure to be described can 

also be regarded as an instantiation procedure for existentially quanti- 

fied set and integer variables in PB-formulae. However, since by the 

results of [Rabin, ] any general Presburger decision algorithm must 

be exponentially inefficient, limited but efficient procedures applicable 

in special cases like those described in the preceding section retain 

interest even in the presence of the general results which we now present. 

As noted previously, in considering any existentially quantified PB- 

formula (3n)P(n) or (3x)P(x) (where, here and below, n designates 
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an integer and x a set) we can assume that P is a disjunction of 

literal terms. If existentially quantified over an integer, such a 

formula can therefore be written as 

I J 

where the a and bk are positive integer constants, the % and 

Bk are valid integer-valued PB-terms, and Q is a valid PB-formula. 

If existentially quantified over a set, a PB-formula can be written as 

k 

where % and Q are as before, each c is an integer constant, 

and Ck and Dk are valid set-valued PB-terms. 
kj 

We begin by analyzing (18). In order to make the inductive course 

of the analysis clear we ignore the conjunct 

conjuncts expressing divisibility relationships under the quantifier. 

Specifically, we consider 

Q but introduce additional 

J L 
(3d( k=l  (%n 2 9) & k= & 1 (bkn < - Bk) k= & 1 (ckIdkn+Ek) 

where mln reads 'm divides n', c and dk are positive integer 

constants, and E is an integer-valued PB-term. Suppose for the sake 

of definiteness that I >  0 in (20), and that ( 2 0 )  admits a solution n. 

Then among these solutions, all of which exceed the largest among the 

quantities %/ak, there must exist a smallest n. This n will have 

the form (4,+ j)/ak where j 

denote the quotient ck/GCD(c ,d ) for k=l...L. Since n is 

smallest it must be impossible to subtract any common multiple of 

ak,c l,...,c from j and still have a non-negative integer. Hence 

k 

k 

is a non-negative integer. 'Let 5 k 

k k  

5 5 

L 
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0 < j < = GCD(ak,Cl, ..., - cL) . - - k  

Thus (20) i s  equivalent  t o  t h e  following f i n i t e  d i s junc t ion :  

I r i /  I J 

L 

Note t h a t  (22) has e s s e n t i a l l y  the same form as (20),  but  has one less 

e x i s t e n t i a l  q u a n t i f i e r .  Moreover, i n  passing from (20) t o  (22) w e  have 

e s s e n t i a l l y  ‘solved’ f o r  n :  n i s  (Ai+ j ) / a  where (22) se rves  i ’  

t o  l o c a t e  i and j wi th in  t h e  f i n i t e  set ( [ i , j ] : l < i < I ,  - -  l < j  - -  <ri) 
Next w e  consider (19),  once more ignoring the  conjunct Q .  We 

handle t h i s  by forming a l l  possible  i n t e r s e c t i o n s  Hi of the  sets 

Ck , D k ,  and t h e i r  complements. This gives  us  a c o l l e c t i o n  H1.. . - 9% 

of sets. Each of the  sets  C k , D k  can then be w r i t t e n  as a d i s j o i n t  

union of t he  H i :  

k =  1.. .n , 
j ’  

Dk= u H 
j ’  Wk 

C k =  u H 
j E Y k  

where yk and 6 are subse ts  of { l , . . . , R I .  The set x appearing 

i n  (19) can then be w r i t t e n  as a union of i ts d i s j o i n t  subpar t s  xfl H , 
- -  - - - _.-_ _ _  j -  -- - 

and (19) only cons t ra ins  the  c a r d i n a l i t y  of t hese  sets,  which w e  now 

assume t o  be f i n i t e .  Hence (19) can be r ewr i t t en  as 

. _ -  -___ - . - - - - - - - 
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Once having put (19) into the form ( 2 4 )  we can apply the Presburger 

technique described above,repeatedly, to eliminate the integer quanti- 

fiers 

equivalent to (19) but containing one less quantifier. 

3n , . . . ,nR . This will ultimately yield a valid PB-formula 
1 

Once the integers 

n ... n are instantiated we can clearly use them to instantiate 

x -  U (xnHj) ; note that for simplicity's sake it is always best to 

1 R  
R 

j =1 

instantiate each n either as n -0 or  n =#H if this is possible. j j j j  

IV. Sets of Infinite Cardinality. 

In the preceding section we have only considered arithmetic formulae 

quantified over finite integers, and hence were only able to consider 

set-theoretic formulae quantified over finite sets. However, as was 

shown by [Tarski, 19561, the additive theory of infinite cardinals is 

also decidable, and this fact makes it easy to extend our discussion to 

the infinite case. That is, we can consider formulae involving all the 

operators listed in the preceding section (but omiting arithmetic sub- 

traction, which is not well defined in the infinite case), and quantified 

over either general sets or general cardinals. Let us call this class 

of formulae TPB-formulae. Suppose that (in this section) we write n 

for finite integers, N for cardinals finite or infinite, v for 

cardinals known to be infinite. Then for any predicate P we have 

Formulae quantified over integers can be handled in the manner described 

in the preceding section. A TPB-formula of the form (3V)P(V) can be 

written as a disjunction of clauses 

-10- 



(26) 
J L 

( 3 ~ ) (  & ( a k v + 4 , > b  v + B  ) &  & ( ckv+Ck=d  v+Dk) k t l  k k= 1 

where each a k~ bks c k y  dk is  e i t h e r  0 o r  1 ,  and each %, Bk, Ck, 

Dk is  a well-formedy cardinal-valued, TPB-term. 

The sum of two ca rd ina l s ,  A and B a t  least one of which is  

i n f i n i t e ,  is  always t h e  maximum of A and B .  Thus t h e  elementary 

c lauses  which appear i n  (26) can be s impl i f ied  by use of t h e  fol lowing 

equivalences:  

v + A  = V + B  is  equivalent  t o  A=Bv(v L A & v  1 B) (27a) 

V + A  = B is equivalent  t o  (v 1. A & v = B ) v ( v < A & A = B )  (27b) 

V + A  > B is equivalent  t o  v > A ~ A  > B (27c) 

A > v + B  is equivalent  t o  A > v & A  > B (27d) 

V + A  > v + B  is equivalent  t o  A > v & A  > B .  ( 2 7 4  

To treat (26) induct ive ly  i t  is  convenient t o  in t roduce  one more opera tor  

and a family of pred ica tes .  By U w e  denote the  opera tor  which maps each 

ca rd ina l  u t o  t h e  next  l a r g e r  ca rd ina l  ov . The p red ica t e s  TIn(V) 

- -  - -  . _ _  

- _ _  

are def ined by TIn(v) = (3vl)(onv = v)  . 
U(V + V  ) = o V  + U V  and V + U V = U V .  Moreover TIn(ov) TIn-l(u) , 
where TI (v) is  i d e n t i c a l l y  t r u e ;  and 

For i n f i n i t e  ca rd ina l s  w e  have 
1 

1 2  1 2 

-1 

Call a TPB-formula containing occurrences o f t h e  opera tor  0 and t h e  

p red ica t e s  X a genera l ized  TPB-formula. Then any general ized TPB- 

formula e x i s t e n t i a l l y  quan t i f i ed  over an i n f i n i t e  ca rd ina l  v can be 

wr i t t en  as a d i s junc t ion  of c lauses  

n 
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& ((ck>v + C  ) =  (dkoqkv+Dk)) & I! 
L 

k=l k r 

where Q is independent of v ;  and then simplified by the use of the 

identities ( 2 7 ) ,  (28) etc. to a disjunction of clauses 

J L 
( l v )  & (a VI%) & & (Bk>otv) & & ( z k V  =Ck) & nr (V) 

( k r l  "k k=l k=l 

where as before 

terms, and r, %, t, and p are integer-valued constants. Moreover, 

since A > B  if and only if aA>aB , (30) can be further simplified to 

42, Bk, and Ck are well-formed cardinal-valued TPB- 

k 

If L 2 1, then (31) is clearly equivalent to 

L I J 
& (C = C k )  & & (C >$) & fi (Bk>C1) &IIr+n(C1) . 

k=l 1 k=l 1 k=2 

If L = O  but I 2 1 ,  then (31) can be written as 

I J  

The case L = I = O  , J 11 can be handled similarly. Thus (26) can 

always be reduced to a disjunction of generalized TPB-clauses with one 

fewer quantifier, so that recursive evaluation of the truth value of 

any TPB-clause is always possible. 
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V. Instantiation of Single-valued and 1-1 Mappings. 

Next we consider quantified set-theoretic formulae of the form 

(3f)e(f [E 3 , .  . . ,f [%I ,  domain f) 
1 

( 3 4 )  

where f ranges over all single-valued maps, f[s] designates the 

range of f on the set s,  e=e(xl, ...,$) is any valid PB-expression, 

and El, ..., ER are sets or set-valued expressions. We can also consider 

formulae having this same internal structure but quantified over 1-1 

maps F. 

f, g, etc. to designate single-valued maps, and letters F, G, etc. to 

designate 1-1 maps.) 

(Generally speaking, on the next few pages we will use letters 

Going still further, we will consider formulae 

"1 "M (3f)e(f [El], . . . ,f [%I ,  domain f) (35) 

where the n are positive integers, and where fn designates the 

n-th power of f. The 1-1 map case corresponding to (35) can also be 

considered. 

j 

We take up ( 3 4 )  first. This case is handled by forming all possible 

of the sets Ek, and domain f , and their complements. Hi intersections 

This gives us a collection 

well as each of the sets 

H ,...,% of sets, and then domain f, as 
1 

Ek can be written as a disjoint union: 

where 6 and q are subsets of {l, ..., R} Then f[q]= u f[Hj]; 
j E'lk k 

moreover the image sets x = f [ H . ]  can be chosen independently and 

arbitrarily subject only to the restriction #x. I #H and #x. 2 1 

if j€6. Hence (25) can be rewritten as 

j J 

J j J 
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(37 ) 

The techniques described in the preceding section can then be used to 

eliminate the quantified set variables 

will have been converted into a set-theoretic formula having the same 

x ,...,\ , after which ( 3 4 )  
1 

structure as ( 3 4 )  but containing one fewer quantifier. Clearly, sets 

x ,...,% instantiating (37) define a map f instantiating ( 3 4 )  . 
1 

Even if the existentially quantified map variable in (25) is required 

to be 1-1, much the same technique can be used. In this case, we have 

only to insist that each x have the same 

that distinct x be disjoint. This means 

should be rewritten as 

j 

j 

cardinality as H and 

that in the 1-1 case (25) 
j' 

To handle the somewhat more general cases (35), first suppose that 

n 21. Then (35) can be written as 
1 

n 
n2 M (3f,x ,... ,x )(e(xn ,f [E 1, ..., f [ % I )  & 

2 nl 1 1 
( 3 9 )  

Exactly the same transformation applies even if 

1-1. Thus in any case (35) can be reduced to a-formula like ( 3 4 ) .  

f is required to be 
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The case of ( 3 5 )  in which all n are negative can also be regarded 

as a case of ( 3 5 )  in which alln are positive but in which the quanti- 

fied map variable ranges over one-to-many instead of single-valued many- 

to-one maps. The transformation which leads from ( 3 4 )  to ( 3 7 )  can still 

be applied; thus in the case considered we can confine our attention to 

j 

j 

formulae of the form ( 3 4 ) ,  but in which f ranges over one-to-many maps 

rather than single-valued maps. In this case, the image sets xj =f[Hjl 

which appear in ( 3 7 )  can still be chosen independently, but must be 

disjoint and are subject to the condition #x. 2 #I3 . Hence for f 

quantified over the inverses of single-valued maps, ( 3 4 )  is equivalent to 
J j  

Note also that since inverses of 1-1 maps are simply 1-1 maps, ( 3 8 )  and 

( 3 9 )  apply without change in the 1-1 case even if all the n in ( 3 5 )  

are negative. 
j 

VI. Another Special Case. 

The all too obvious inefficiency of the general techniques described 

in the two preceding sections makes it clear that more efficient special 

instantiation methods will remain useful. We shall now extend the intro- 

ductory result derived in SectionIIabove by considering the existentially 

quantified formula 

(3x)(ax+bZ=@ & c x+d f+@&c x+d ;#@).  
1 1 2 2 
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(This corresponds t o  m =  2 i n  t he  no ta t ion  of Sec t ion  11.) I n  t h i s  case a 

s o l u t i o n  f o r  x can be expressed as fol lows:  

x = i f  (c + c  - a ) # @ & ( ( c  y a & d 2 s b & c  - a = d  - b ) v  (42) 
1 2  1 2 1 

( c 2 s a & d  c b & c  - a = d  2 - b ) )  then  
1 -  1 

b + { E ( c  + c  - a ) }  
1 2  

else i f  (c c a & d  - b C c 2 - a ) v ( c  C a 4 d  - b s c  - 4  then  
1 1 2 2 1 

b + ( ( c  - d  ) + ( c 2 - d  ) - a )  
1 2  1 

else b + ( c  + c - a )  . 
1 2 

Here { E  s) denotes an  a r b i t r a r y  s ing le ton  subse t  of t h e  set s.  To show 

t h a t  (42) solves  (41) i f  (41) has any s o l u t i o n ,  w e  f i r s t  no te  t h a t  a s o l u t i o n  

can only e x i s t  i f  a b = @ ,  and t h a t  any s o l u t i o n  x of (41) must s a t i s f y  

b c x ,c a . 
Clear ly  x = b +  (c + c - a ) i s  a s o l u t i o n  of (41) unless  c c a  o r  

c 2 a .  Moreover, i f  c c a  & c c a ,  then  x = b ,  and since any 

s o l u t i o n  of (41) must include b i t  fol lows i n  t h i s  case t h a t  x so lves  

(41) i f  any s o l u t i o n  exists. Hence s p e c i a l  cons idera t ion  is  only requi red  

f o r  cases i n  which one but  no t  bo'th of t h e  inc lus ions  

holds .  Suppose f o r  t he  sake of d e f i n i t e n e s s  t h a t  c E a ,l c c_ a .  I n  

t h i s  case, x so lves  (41) unless  d 2 x = b + ( c  - a )  . I f  w e  now suppose 

t h a t  c - a #  d - b , then  x = b +  (c  - d - a )  i s  a s o l u t i o n  of (41) . 
Since c - a =  @ ,  t h i s  s o l u t i o n  can be w r i t t e n  symmetrically as 

Hence w e  can assume t h a t  ab = @ , and then  w e  argue by cases. - 

0 1 2  1 -  

2 1 -  2 -  0 

0 

c c a , c a 
1 2 

1 2 

0 1 0 2 

1 2 1  2 1 

1 

b + ( ( c  - d  ) + ( c  - d  ) - a ) .  Moreover, even i f  c - a = d  - b ,  x = b  
2 1  1 2  2 1 1 

s t i l l  solves  (41) unless  d g b .  The remaining subcase is  t h a t  i n  which 
2 
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c + c  - a + @  , c s a  , d c b  , c - a = d  - b  , i n  which case a s o l u t i o n  e x i s t s  

i f  and only if c - a  has more than one element. I n  t h i s  subcase,  t h e  

union of b and any proper p a r t  of c - a  i s  a so lu t ion  of (41). 

1 2  1 2- 2 1 

2 

2 

The argument t h a t  w e  have j u s t  given j u s t i f i e s  t h e  s o l u t i o n  (42) and 

shows t h a t  t he  Boolean expression (41) i s  equivalent  t o  

A l l  but  t h  

a b = @ & ( c  - a # @ & c  - a # @  
1 2 

v ( c  + c  - a = c $ & d  - b # @ & d  - b # @ )  
1 2  1 2 

v ( c 1 - a = @  & c - a # @ & d  - ( b + c  - a ) # @ )  
2 1 2 

v ( c l - a = @  & c - a # $ & d  - b # c  - a )  
2 1 2 

v ( c 1 - a = $  & c - a # @ & d  - b # @ )  

v ( c 2 - a = @  & c - a # @ & d 2 -  ( b + c  - a ) # @ )  

v ( c 2 - a = @  & c - a # @ & d  - b # c  - a )  

2 2 

1 1 

1 2 1 

v ( c 2 - a = @  & c - a # $ b d  - b # @ )  
1 1 

v ( c 1 - a = @  & d 2 - b = @ & c  - a = d  - b & # ( c  - a ) > l )  
2 1 2 

v ( c Z - a = $  & d l - b = $ & c  - a = d  - b & b ( c  - a > > l ) .  
1 2 1 

(43) 

two f i n a l  d i s j u n c t s  i n  (43) involve two s e t - t h e o r e t i c  i n  qual- 

i t ies,  i.e.,  have t h e  same form as (41). The two f i n a l  d i s j u n c t s  have 

t h e  form A = @ & # B > l ,  

quan t i f i ed  s ta tements  of t h i s  form, i .e.,  

f o r  which reason i t  i s  worth examining e x i s t e n t i a l l y  

( 3 x > ( a x + b x = $  & #(cx+dG) >k) , (44) 

- a  l i t t l e  more c lose ly .  

-17- 



A so lu t ion  x of (44) must s a t i s f y  b c x c a ;  and t h e  only elements 

y E 2 - b t h a t  i t  pays t o  inc lude  i n  the  s o l u t i o n  are those which belong 

t o  c .  Hence if a s o l u t i o n  e x i s t s  then b +  ( c - a )  i s  a so lu t ion .  It 

fol lows t h a t  (44) is  equivalent  t o  

mul t ip ly  quant i f ied  s ta tements  of t h e  form (44) can be handled us ing  t h e  

techniques described i n  t h i s  Sect ion and i n  Sect ion I1 above. 

ab = 0 & # ( ( c  - a )  + (d - b ) )  > k ; t hus  

VII. Is This an Application? 

W e  consider t h e  SchrGder-Bernstein theorem, a s e t - t h e o r e t i c  formula 

a l s o  considered i n  [Minor, 19781. This can be w r i t t e n  as follows: 

(ffx,y,F,G)((domain F = x & d o m a i n  G = y & F [ x ] c y & G [ y ] ~ x )  - (45) 

-> (3H) H[xl = Y >  , 

where as previously F, G ,  H des igna te  1-1 maps. The eva lua t ion  

algori thm f o r  formulae quan t i f i ed  over maps descr ibed i n  t h e  preceding 

pages w i l l  v e r i f y  t h i s  a s s e r t i o n  without d i f f i c u l t y ,  e s s e n t i a l l y  reducing 

i t  via t h e  following sequence of equiva len t  forms: 

(Vx,y,F,G)((domain F = x & d o m a i n  G = y & F [ x ]  ~ y & G [ y ]  g x )  

4 ( I x  = fly)) . 
( 4 6 4  

(Vx,y,F,u) ((domain F = x & F[x]  y & u c, x & (#u = fly) - (fix = By)). 

Wx,y,v,u) (u x & v c y  & (flu 5 Py) & (%v - < #x) 

This l a s t  formula is  v e r i f i e d  almost immediately by t h e  b a s i c  TPB- 

v e r i f i c a t i o n  algorithm. 
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From the point of view of the verification system designer, this is 

an interesting and perfectly legitimate application of the techniques we 

have developed. 

this "application" is circular and hence a bit spurious, since the TPB- 

formula verifier implicitly embodies facts concerning cardinals which 

are distinctly deeper than the Schroder-Bernstein theorem being verified. 

Note however that from the foundational point of view 

t 
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